
Make Your Data Dance:
UNPIVOT, PIVOT and GROUP BY Extensions

Stew Ashton
Independent
Paris, France

Keywords:

SQL, PIVOT, UNPIVOT, GROUP BY

Summary

Reporting, Data Warehouses, Analytics, data migration: so much if it is data manipulation. When
querying or copying, how often do we need to move data from columns to rows, from rows to
columns, or aggregate at multiple levels?

This session will focus on the low code, very high performance SQL functions available in the Oracle
Database:
- UNPIVOT: move data from multiple columns to multiple rows with one pass through the data,
eliminating needless table scans.
- PIVOT: aggregate and move data from rows to columns.
- GROUP BY extensions (ROLLUP and CUBE among others): aggregate at multiple levels with one
statement and one pass through the data.

 Among the use cases presented will be:
- unpivoting start and end dates for analysis of temporal data;
- producing reports with totals and subtotals across rows and / or columns;
- matrix manipulation.

Preface

If you are reading this, you must think these pre-conference abstracts are worthwhile. I hope so, since
they are extra work that is only used once (for DOAG), in contrast to the presentation itself that I
expect to reuse at other venues.

This manuscript is intended to be “spoiler-free”: reading it is not a substitute for attending the
presentation. Its purpose is to help you decide whether attending is a good idea for you - assuming that
the summary above is not sufficient.

The intended audience of the session is “SQL practitioners”: people who write SQL as part of their
work, or who tell SQL writers how to do their job.

Introduction

“Aggregate” functions return a single result row based on groups of rows, rather than on single rows.
With the GROUP BY clause, one row is returned per group. Without the GROUP BY clause, one row
is returned, even when there are no queried rows.

The Data Warehousing Guide explains Oracle extensions to GROUP BY that calculate multiple levels
of aggregation in one pass. Queries that use these extensions (ROLLUP, CUBE or GROUPING
SETS) are simpler and much more efficient than using UNION ALL.

For reporting and data manipulation, the same Guide presents the UNPIVOT and PIVOT operations,
which convert columns to rows or rows to columns. The PIVOT also performs an implicit GROUP
BY.

The presentation will present use cases for each function, both separately and in tandem.

UNPIVOT

The UNPIVOT operator rotates data - and metadata - from columns into rows. Look at this example:

drop table mytype purge;
create table mytype(
 pk number, code1 varchar2(5), code2 varchar2(5),
 code3 varchar2(5), code4 varchar2(5)
);
insert into mytype values(1, '111', '112', '113', NULL);
insert into mytype values(2, '112', '113', '111', NULL);

select * from mytype
unpivot(code for col in(code1, code2, code3, code4));

 PK COL CODE
---------- ----- -----
 1 CODE1 111
 1 CODE2 112
 1 CODE3 113
 2 CODE1 112
 2 CODE2 113
 2 CODE3 111

The CODE1 through CODE4 columns now each belong to separate rows (by default, NULL values
are ignored but we can say they should be included). Not only that, but the column names (which are
metadata) have now become data.

We could get the same result from a series of SELECTs with UNION ALL, but the advantage of
UNPIVOT is that only one scan of the data takes place.

The presentation will show a common use case: combining start and end points of date ranges in order
to get all the date boundaries.

PIVOT

The PIVOT operator does an implicit GROUP BY and rotates data from multiple rows into one row
with multiple columns. Whereas UNPIVOT converts column names to data, PIVOT transforms data
into column names.

select * from (
 select deptno, job, sal from emp
)
pivot(avg(sal) for job in (
 'ANALYST',
 'CLERK',
 'MANAGER',
 'PRESIDENT',
 'SALESMAN' as SALESMAN
));

 DEPTNO 'ANALYST' 'CLERK' 'MANAGER' 'PRESIDENT' SALESMAN
---------- ---------- ---------- ---------- ----------- --------
 30 950 2850 1400
 20 3000 950 2975
 10 1300 2450 5000

• The data being pivoted must come from an aggregate function.
• The list of jobs must be known beforehand, since it determines what columns will appear in

the final result set.
• The column list will generally need aliases (such as for SALESMAN) in order to generate

normal column names.
• The presentation will later show pivoting of multiple data columns.

Transposing data with UNPIVOT and PIVOT

We sometimes want completely transpose columns to rows and rows to columns. The presentation
will show UNPIVOT followed by PIVOT in the same SELECT, including an advanced solution that
unpivots and pivots multiple columns (problem statement from Nimish Garg).

Matrix manipulation

A matrix is displayed in a tabular format, as in a spreadsheet: row, col1, col2,…, coln.

It is much easier to manipulate the data and store it correctly in the format: row_number,
column_number, cell_value.

UNPIVOT can easily convert the tabular format to the preferred format, either for data migration or
ease of processing. The result can easily be displayed in tabular form using PIVOT.

ROLLUP, CUBE, GROUPING SETS

GROUP BY extensions produce multiple levels of aggregation with one pass through the input data.
Here is a use case with CUBE:

Suppose the requirement is to sum salaries by DEPTNO and JOB and to display them as follows:

JOB 10 20 30 TOTAL

ANALYST

6000

6000

CLERK 1300 1900 950 4150

MANAGER 2450 2975 2850 8275

PRESIDENT 5000

5000

SALESMAN

5600 5600

 Total 8750 10875 9400 29025

• The white cells with numbers contain subtotals by DEPTNO and JOB;
• the yellow cells (right hand column) contain subtotals by JOB;
• the blue cells (bottom row) contain subtotals by DEPTNO;
• and the green cell (bottom right) contains the grand total.

The CUBE extension to GROUP BY is ideal for this kind of cross-tabular report: it will generate
everything we need with one SELECT and one table scan.

select deptno, job, sum(sal) sal
from scott.emp
group by cube(deptno, job);

JOB SAL

29025

CLERK 4150

ANALYST 6000

MANAGER 8275

SALESMAN 5600

PRESIDENT 5000

8750

CLERK 1300

MANAGER 2450

PRESIDENT 5000

10875

CLERK 1900

ANALYST 6000

MANAGER 2975

9400

CLERK 950

MANAGER 2850

SALESMAN 5600

The tricky part of this particular pivoting operation is handling NULLs correctly. For one thing,
the JOB subtotals need to be pivoted to the rightmost column, but they have no DEPTNO value to
pivot to. For another thing, the input might have NULLs in the JOB or DEPTNO columns, so I need a
reliable way to identify the output rows that have subtotals.

I use the GROUPING() function to identify the subtotals:

• When GROUPING(DEPTNO) is equal to 1, the row contains a JOB subtotal (or the grand
total) and I have to assign an arbitrary DEPTNO value so I can pivot.

• When GROUPING(JOB) is equal to 1, the row contains a DEPTNO subtotal (or the grand
total) so after pivoting I output ‘Total’ in the JOB column of the last row.

•
select case gr_job when 1 then 'Total' else job end job,
 "10", "20", "30", "Total"
from (
 select case grouping(deptno) when 1 then -1 else deptno end
deptno,
 job, grouping(job) gr_job, sum(sal) sal
 from scott.emp
 group by cube(deptno, job)
)
pivot(
 sum(sal) for deptno in (10, 20, 30, -1 as "Total")
)
order by gr_job, job;

Contact address:

Stew Ashton
Blog: https://stewashton.wordpress.com/
Twitter: @stewashton

