
@AndyGeeDe

Testing Java
Microservices

@AndyGeeDe

Andy
Gumbrecht

@AndyGeeDe

@AndyGeeDe

@AndyGeeDe

What is a Microservice?

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint

This bit!

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint
Which can be as small as “you” want
Or as big as “you” want

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint
Which can be as small as “you” want
Or as big as “you” want
The idea is to make it scalable
It does not have to be an SCS
An SCS can expose multiple Microservices

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint
Which can be as small as “you” want
Or as big as “you” want
The idea is to make it scalable
It does not have to be an SCS
An SCS can expose multiple Microservices
It’s your party, the goal is to test the beer

@AndyGeeDe

What is a Microservice?
The surface area exposed by an endpoint
Which can be as small as “you” want
Or as big as “you” want
The idea is to make it scalable
It does not have to be an SCS
An SCS can expose multiple Microservices
It’s your party, the goal is to test the beer wine

@AndyGeeDe

The Monolith

@AndyGeeDe

The Monolith
Is the entire application, packaged
Gets deployed to a node/container

@AndyGeeDe

The Monolith
Is the entire application, packaged
Gets deployed to a node/container
Scaling means duplication

@AndyGeeDe

The Monolith
Is the entire application, packaged
Gets deployed to a node/container
Scaling means duplication
Duplicating everything
Small apps are fine
Even big apps can be fine
It’s the image that counts

@AndyGeeDe

The Microservice

@AndyGeeDe

The Microservice
Identify the bottlenecks
Profiling requests

@AndyGeeDe

The Microservice
Extract the bottleneck
Make it elastic
Test it!

@AndyGeeDe

Test Pyramid

@AndyGeeDe

Test Pyramid
Unit
Smallest scope
possible in order to
verify functionality

No collaborators

Mocks & Co.

@AndyGeeDe

Test Pyramid
Unit
Smallest scope
possible in order to
verify functionality

No collaborators

Mocks & Co.

Integration
Using real
collaborators to
test the interaction
of unit tested
components

Mocks & Co.

Service
Virtualization

@AndyGeeDe

Test Pyramid
Unit
Smallest scope
possible in order to
verify functionality

No collaborators

Mocks & Co.

Integration
Using real
collaborators to
test the interaction
of unit tested
components

Mocks & Co.

Service
Virtualization

End-to-End (E2E)
Simulating the
user interaction
with the exposed
application UI that
uses all integration
tested modules
and collaborators

No Mocks & Co.*

UI Automation

@AndyGeeDe

REST Assured
Great for integration tests

@Test public void
lotto_resource() {

 when().
 ...

@AndyGeeDe

REST Assured
Great for integration tests
Understands http://localhost:8080/lotto/{id}
Easily evaluates REST responses

Find it here: http://rest-assured.io/

@Test public void
lotto_resource() {

 when().
 get("/lotto/{id}", 5).
 then().
 statusCode(200).
 body("lotto.lottoId",

 equalTo(5),
 "lotto.winners.winnerId",
 hasItems(23, 54));

}

@AndyGeeDe

Service Virtualization
Captures the response of a service

@AndyGeeDe

Service Virtualization
Captures the response of a service

@ClassRule
 public static HoverflyRule hoverflyRule
=

@AndyGeeDe

Service Virtualization
Captures the response of a service
Stores the response locally
Replays the canned responses
Is a stubbed remote call
Can be spied upon
Can be evaluated
https://hoverfly.readthedocs.io

@ClassRule
 public static HoverflyRule hoverflyRule
= HoverflyRule.inSimulationMode(dsl(
 service("www.my-test.com")

.get("/api/bookings/1")

.willReturn(
success("{\"bookingId\":\"1\"}",
"application/json"))

));

https://hoverfly.readthedocs.io
http://www.my-test.com

@AndyGeeDe

Contract Testing

@AndyGeeDe

Contract Testing
Like Service Virtualization

@AndyGeeDe

Contract Testing
Like Service Virtualization

Pact (noun):

A formal agreement between individuals or parties.
"The country negotiated a trade pact with the UK"

Synonyms: agreement, protocol, deal, contract
~ Oxford Dictionaries

https://en.oxforddictionaries.com/definition/pact

@AndyGeeDe

Contract Testing
Like Service Virtualization
Record service conversation
To provide canned responses
In the form of a contract
Stored and versioned centrally

Pact (noun):

A formal agreement between individuals or parties.
"The country negotiated a trade pact with the UK"

Synonyms: agreement, protocol, deal, contract
~ Oxford Dictionaries

https://en.oxforddictionaries.com/definition/pact

@AndyGeeDe

Contract Testing
Like Service Virtualization
Record service conversation
To provide canned responses
In the form of a contract
Stored and versioned centrally
Is found here: https://docs.pact.io/

https://github.com/DiUS/pact-workshop-jvm

Pact (noun):

A formal agreement between individuals or parties.
"The country negotiated a trade pact with the UK"

Synonyms: agreement, protocol, deal, contract
~ Oxford Dictionaries

https://docs.pact.io/
https://github.com/DiUS/pact-workshop-jvm
https://en.oxforddictionaries.com/definition/pact

@AndyGeeDe

E2E Testing

@AndyGeeDe

E2E Testing
Probably the most important

@AndyGeeDe

E2E Testing
Probably the most important
Also the most difficult to write
Hardest to set up
The most time consuming
Really frickin annoying

@AndyGeeDe

E2E Testing
Probably the most important
Also the most difficult to write
Hardest to set up
The most time consuming
Really frickin annoying
= Fun!

@AndyGeeDe

docker-compose

@AndyGeeDe

docker-compose
https://docs.docker.com/compose/
Orchestration of docker containers

version: '3'
services:
 e2e-zookeeper:
 image: confluentinc/cp-zookeeper:5.0.0
 environment:
 - ZOOKEEPER_CLIENT_PORT=32181
 - ZOOKEEPER_TICK_TIME=2000
 ports:
 - 32181:32181

https://docs.docker.com/compose/

@AndyGeeDe

docker-compose
https://docs.docker.com/compose/
Orchestration of docker containers
Easy way to start multiple containers

version: '3'
services:
 e2e-zookeeper:
 image: confluentinc/cp-zookeeper:5.0.0
 environment:
 - ZOOKEEPER_CLIENT_PORT=32181
 - ZOOKEEPER_TICK_TIME=2000
 ports:
 - 32181:32181

https://docs.docker.com/compose/

@AndyGeeDe

docker-compose
https://docs.docker.com/compose/
Orchestration of docker containers
Easy way to start multiple containers
And to stop them

version: '3'
services:
 e2e-zookeeper:
 image: confluentinc/cp-zookeeper:5.0.0
 environment:
 - ZOOKEEPER_CLIENT_PORT=32181
 - ZOOKEEPER_TICK_TIME=2000
 ports:
 - 32181:32181

https://docs.docker.com/compose/

@AndyGeeDe

Testing Framework

@AndyGeeDe

Testing Framework

@ClassRule
 public static final ArquillianTestClass

arquillianTestClass
= new ArquillianTestClass();

@AndyGeeDe

Testing Framework
Arquillian, here to squash bugs
Java Testing Framework
Not just for E2E
Not just for EE
RedHat Project
Supports all containers.
Is found here: http://arquillian.org/

@ClassRule
 public static final ArquillianTestClass

arquillianTestClass
= new ArquillianTestClass();

@AndyGeeDe

The Build Pipeline
Continuous Integration (CI)
Continuous Delivery (CD)

@AndyGeeDe

The Build Pipeline
Continuous Integration (CI)
Continuous Delivery (CD)

Have a play with the docker
container!

sudo docker run --detach \

--hostname gitlab.example.com \

--publish 8243:443 --publish 8280:80 --publish 8222:22 \

--name gitlab \

--restart always \

--volume /srv/gitlab/config:/etc/gitlab \

--volume /srv/gitlab/logs:/var/log/gitlab \

--volume /srv/gitlab/data:/var/opt/gitlab \

gitlab/gitlab-ce:latest

@AndyGeeDe

Thank you for
your time

Happy testing!

