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The Monolith
Is the entire application, packaged
Gets deployed to a node/container
Scaling means duplication
Duplicating everything
Small apps are fine
Even big apps can be fine
It’s the image that counts
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The Microservice
Extract the bottleneck
Make it elastic
Test it!
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Test Pyramid
Unit
Smallest scope 
possible in order to 
verify functionality

No collaborators

Mocks & Co.

Integration
Using real 
collaborators to 
test the interaction 
of unit tested 
components

Mocks & Co.

Service 
Virtualization

End-to-End (E2E)
Simulating the 
user interaction 
with the exposed 
application UI that 
uses all integration 
tested modules 
and collaborators

No Mocks & Co.*

UI Automation
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    when().
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REST Assured
Great for integration tests
Understands http://localhost:8080/lotto/{id}
Easily evaluates REST responses

Find it here: http://rest-assured.io/

@Test public void
lotto_resource() {

    when().
            get("/lotto/{id}", 5).
    then().
            statusCode(200).
            body("lotto.lottoId", 

 equalTo(5),
 "lotto.winners.winnerId", 
 hasItems(23, 54));

}
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@ClassRule
    public static HoverflyRule hoverflyRule 
= 
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Service Virtualization
Captures the response of a service
Stores the response locally
Replays the canned responses
Is a stubbed remote call
Can be spied upon
Can be evaluated
https://hoverfly.readthedocs.io

@ClassRule
    public static HoverflyRule hoverflyRule 
= HoverflyRule.inSimulationMode(dsl(
        service("www.my-test.com")

.get("/api/bookings/1")            

.willReturn(
success("{\"bookingId\":\"1\"}", 
"application/json"))

    ));

https://hoverfly.readthedocs.io
http://www.my-test.com
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Like Service Virtualization

Pact (noun):

A formal agreement between individuals or parties.
"The country negotiated a trade pact with the UK"

Synonyms: agreement, protocol, deal, contract
~ Oxford Dictionaries

https://en.oxforddictionaries.com/definition/pact
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Contract Testing
Like Service Virtualization
Record service conversation
To provide canned responses
In the form of a contract
Stored and versioned centrally
Is found here: https://docs.pact.io/

https://github.com/DiUS/pact-workshop-jvm

Pact (noun):

A formal agreement between individuals or parties.
"The country negotiated a trade pact with the UK"

Synonyms: agreement, protocol, deal, contract
~ Oxford Dictionaries

https://docs.pact.io/
https://github.com/DiUS/pact-workshop-jvm
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E2E Testing 
Probably the most important
Also the most difficult to write
Hardest to set up
The most time consuming
Really frickin annoying
= Fun!
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docker-compose 
https://docs.docker.com/compose/
Orchestration of docker containers

version: '3'
services:
 e2e-zookeeper:
   image: confluentinc/cp-zookeeper:5.0.0
   environment:
     - ZOOKEEPER_CLIENT_PORT=32181
     - ZOOKEEPER_TICK_TIME=2000
   ports:
     - 32181:32181

https://docs.docker.com/compose/
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docker-compose 
https://docs.docker.com/compose/
Orchestration of docker containers
Easy way to start multiple containers
And to stop them

version: '3'
services:
 e2e-zookeeper:
   image: confluentinc/cp-zookeeper:5.0.0
   environment:
     - ZOOKEEPER_CLIENT_PORT=32181
     - ZOOKEEPER_TICK_TIME=2000
   ports:
     - 32181:32181

https://docs.docker.com/compose/
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 public static final ArquillianTestClass

arquillianTestClass 
= new ArquillianTestClass();
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Testing Framework 
Arquillian, here to squash bugs
Java Testing Framework
Not just for E2E
Not just for EE
RedHat Project
Supports all containers.
Is found here: http://arquillian.org/

@ClassRule
 public static final ArquillianTestClass

arquillianTestClass 
= new ArquillianTestClass();
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The Build Pipeline
Continuous Integration (CI)
Continuous Delivery (CD)

Have a play with the docker 
container!

sudo docker run --detach \

--hostname gitlab.example.com \

--publish 8243:443 --publish 8280:80 --publish 8222:22 \

--name gitlab \

--restart always \

--volume /srv/gitlab/config:/etc/gitlab \

--volume /srv/gitlab/logs:/var/log/gitlab \

--volume /srv/gitlab/data:/var/opt/gitlab \

gitlab/gitlab-ce:latest
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Thank you for 
your time

Happy testing!


