

Advanced Usage of the AWR Warehouse

Author: Kellyn Pot’Vin-Gorman, Consulting Member of Technical Staff, SCP Team

Introduction
My initial introduction to the concept of an AWR Warehouse occurred back in 2009. The
company I worked for had a very unique situation, where once per week, a datamart was
dropped and a new image was created from the ever-growing data warehouse. Ensuring
consistent performance in a single database is difficult enough, the challenge of guaranteeing
this in a new database each week is a whole new demand on an optimization database
administrator. Due to this challenge, I took a set of scripts that Karl Arao and I had enhanced
over a period of a couple years via email into a full AWR Warehouse. This performance data
repository offered me answers to many of the company’s performance questions time and time
again, so when Oracle introduced its impressive offering, I was sold.

Since then, I’ve had the opportunity to work with both the Oracle EM12c Cloud Control AWR
Warehouse interface, as well as work with the repository via SQL*Plus. I’ve dug in deep to
understand what options and performance advantages exist with the AWR Warehouse
repository and played devil’s advocate when the chance has arisen. I’m pleased to talk about all
the impressive features that a centralized AWR Warehouse offers the IT business.

Design and Function
The AWR Warehouse is set up with the same objects as you are accustomed to in a standard
AWR schema of any Oracle database. The enhancement lies in the partitioning, (either by DBID,
SNAP_ID or a combination of both) that allows for quick loads, efficient querying and when
requested, effective purging of unwanted data.

The jobs to both extract data from the source target, as well as load into the AWR repository is
designed with “throttles” to ensure that if historical loads are being performed, no impact to
user performance is felt.

Figure 1.1 The AWR Warehouse Architecture and ETL Load process.

If for some reason the database was unavailable for uploads to the AWR Warehouse, due to
maintenance or other outage, there are added “throttles” to ensure an ETL load is never too
large and that oldest data is always loaded first to ensure retention times don’t impede the
ability to offload the valuable AWR data to the repository.
During a “catch-up” period, the ETL jobs are run once every three hours instead of the once
every 24hr. standard interval. The files are transferred from the source target file system to the
AWR Warehouse server via a “Agent to Agent” push. This limits the pressure on the network
and at no time, touches the EM12c Oracle Management Service, (OMS) and/or Oracle
Management Repository, (OMR) server.

Sizing the AWR Warehouse Properly
When sizing the AWR Warehouse, one of my requirements is to have certain reports for a
sampling of databases that will source the AWR Warehouse. This report provides me the right
information to create the correct sizing requirements vs. any assumptions done with other
choices. The report is the General AWR Information report and can be found in the
$ORACLE_HOME/rdbms/admin directory. It provides the following information:

¶ Time of Report

¶ AWR Retention and interval settings, including if non-default setting.

¶ Schema percentage of space used in the SYSAUX tablespace.

¶ Objects and space consumption in the SYSAUX tablespace, including breakdown of the
AWR space usage by type.

¶ Automated tasks scheduled.

¶ ASH Usage Info

¶ Foreground vs. Background processing info.

I’ve now run into a few projects where questions were raised on why so much space was
required and there is sometimes an issue with the data being retained in the AWR that must be
identified or addressed that will impact the long term size demand on the warehouse before
the data is brought over from the source database, (target) via the ETL to the AWR Warehouse.
 Knowing how to identify this is crucial, but many folks aren’t looking at AWR data space usage
regularly, so how would you know? Well, that’s what this post is about and hopefully will save
me time with how much is on my plate these days…

Executing the AWR General Info Report
To run the AWR Info report, log into the host of the database in question as a user that has
rights to AWR reports. From the directory you would like to have the report housed, run the
following:
SQL> $ORACLE_HOME/rdbms/admin/awrinfo.sql;

Once the report is generated, simply open it in a text editor on the host or FTP it to your
workstation.

We’ll start with what a standard AWR Info report with “normal” space usage looks like and use
it as a baseline. This will help you, as a DBA understand what is common for AWR space
consumption.

Our Standard retention and interval is 8 days and 60 minute intervals on snapshots and the
space usage for the SYSAUX tablespace looks like this:

(1a) SYSAUX usage - Schema breakdown (dba_segments)

|

| Total SYSAUX size 2,993.9 MB (74% of 4,046.0 MB MAX with

AUTOEXTEND OFF)

|

| Schema SYS occupies 2,750.9 MB (91.9%)

| Schema XDB occupies 67.3 MB (2.2%)

| Schema AUDSYS occupies 65.4 MB (2.2%)

| Schema MDSYS occupies 61.7 MB (2.1%)

| Schema ORDDATA occupies 16.1 MB (0.5%)

| Schema SYSTEM occupies 15.7 MB (0.5%)

| Schema WMSYS occupies 7.1 MB (0.2%)

| Schema EXFSYS occupies 3.7 MB (0.1%)

| Schema CTXSYS occupies 3.7 MB (0.1%)

Non-Default ASH Settings

If the settings have been changed from the default, the AWR info report will display the settings
and let you know they aren’t the default. Space consumption will change vs. what you see in
our first example, too.
Warning: Non Default AWR Setting!
——————————————————————————–
Snapshot interval is 30 minutes and Retention is 8 days (5.2 GB, vs. 3GB for a 60 min. interval.)

OR

Snapshot interval is 60 minutes and Retention is 42 days (10.5 GB)

With an increase in interval or retention, an increase in space consumption will result, but it
won’t be 1:1. There are two features that impact what space is required- rollup, which saves
space, then partitioning, that requires a bit more, so approximately 70% increase on average
with the interval to every 30 minutes.

When an increase in retention of AWR data is implemented, then you should calculate about
2.5G of data for each one week of AWR data retained, at 1hr interval on snapshots, (this
depends on version of the database, too. AWR in 10g is much smaller than 11g, which is also
smaller than 12c…)

AWR Components

We also need to look at the consumption used by a standard AWR schema breakdown to
understand WHAT components are using the space:

(3a) Space usage by AWR components (per database)

COMPONENT MB % AWR KB_PER_SNAP MB_PER_DAY MB_PER_WEEK TABLE% :

INDEX%

--------- --------- ------ ------------ ---------- ----------- -

FIXED 1,559.1 63.3 7,750 181.6 1,271.5 45% : 55%

EVENTS 489.9 19.9 2,435 57.1 399.5 40% : 60%

SQL 238.3 9.7 1,184 27.8 194.3 64% : 36%

SPACE 111.1 4.5 552 12.9 90.6 63% : 37%

ASH 35.3 1.4 175 4.1 28.7 83% : 17%

SQLPLAN 11.0 0.4 55 1.3 9.0 64% : 36%

SQLTEXT 0.9 0.0 5 0.1 0.8 87% : 13%

SQLBIND 0.6 0.0 3 0.1 0.5 50% : 50%

RAC 0.6 0.0 3 0.1 0.5 5 0% : 50%

Note that fixed objects are at the top of the list, followed by events, SQL, space and then, ASH.
 This is how the flow of greatest to least should commonly be displayed.

Now lets looks at an AWR Info report where the data consumption is experiencing an issue:

(3a) Space usage by AWR components (per database)

COMPONENT MB % AWR KB_PER_SNAP MB_PER_DAY MB_PER_WEEK TABLE% :

INDEX%

--------- --------- ------ ------------ ------ ---- ----------- -

ASH 2,410.3 42.5 1,494 70.0 490.2 89% : 11%

FIXED 2,149.7 37.9 1,332 62.5 437.2 48% : 52%

EVENTS 489.7 8.6 304 14.2 99.6 43% : 57%

SPACE 224.4 4.0 139 6.5 45.6 58% : 42%

SQL 160.6 2.8 100 4.7 32.7 55% : 45%

SQLPLAN 82.0 1.4 51 2.4 16.7 67% : 33%

RAC 58.3 1.0 36 1.7 11.8 70% : 30%

SQLTEXT 7.3 0.1 5 0.2 1.5 96% : 4%

SQLBIND 6.0 0.1 4 0.2 1.2 33% : 67%

Note that the ASH data is the first component listed and the size is extensively larger than the
FIXED, EVENTS, etc. There are numerous reasons for this to have occurred, so we’ll investigate
what could have caused the increase in space consumption, as over time, the extended
retention into the AWR Warehouse will consume more space on the destination side,
increasing requirements for the AWR Warehouse.

When ASH is Extensive
First, we’ll check to see what the minimum and maximum snap_id’s from both the
dba_hist_snapshot in comparison to the AWR:
select min(snap_id),MAX(snap_id) from dba_hist_snapshot;

MIN(SNAP_ID) MAX(SNAP_ID)

------------ ------------

 15027 15189

select min(snap_id),MAX(snap_id) from

WRH$_ACTIVE_SESSION_HISTORY;

MIN(SNAP_ID) MAX(SNAP_ID)

------------ ------------

 1 15189

As you can see, the AWR contains ASH data from the first snap_id when the dba_hist snapshot
shows that only data from 15027 on should exist.

We’ll next check for orphaned rows of ASH data in the AWR:

SELECT COUNT(*) FROM wrh$_active_session_history a

 WHERE NOT EXISTS

 (SELECT 1

 FROM wrm$_snapshot

 WHERE snap_id = a.snap_id

 AND dbid = a.dbid

 AND instance_number = a.instance_number

);

If this exists, follow the steps from Oracle to Manually Purge the Optimizer Statistics & AWR
Snaphots to Reduce Space Usage of SYSAUX Tablespace (Doc ID 1965061.1) to split the
partitions and purge the data manually from the AWR from the SOURCE DATABASE, (target) to
address before the ETL extracts and load the data to the AWR Warehouse.

Understanding ASH Parameters
The next reason for the extensive ASH data in the AWR could result in a change to the
parameters involving how ASH data is written to the AWR. I’ve only recently heard that some
shops are doing this as a way to “audit” the SQL happening in their databases. I have to admit, I
would prefer to see DBAs use auditing features vs. use ASH samples to track this, but it is
happening and they should expect the following:

1. Extensive space usage by the AWR

2. Inaccurate results in ASH and AWR reports due to Oracle expecting only 1:10 samples
existing in the AWR and having 10:10 will impact the results.

The parameters controlling this feature are underscore parameters and should only be changed
under the guidance of Oracle.

_ash_sampling_interval = 100 The interval that ASH samples, lessened, causing samples to be
created more often than the default of 1000.
_ash_sample_all = TRUE True results in samples of even inactive sessions to be created,
increasing the amount of ASH data by 10X or more.
_ash_disk_filter_ratio = 1 Would result in ASH writing all samples to the AWR instead of 1:10.

Once you’ve addressed any issues in storage of the AWR and loaded all snapshots to your new
AWR Warehouse, also remember to “dial down” the retention in the source database to a the
default of 8 days, (or something close) and shrink the SYSAUX tablespace to reallocate the
space back to the database, having no longer need of the space it once consumed.

The AWR Warehouse does require considerable storage for the performance data housed
within the Automatic Workload Repository, but with the right process to inspect what is kept in
your AWR before building out your environment, you can avoid having to allocate more storage
than you really need to.

Once you know what is in your AWR in your source databases are prepared to bring into an
AWR Repository, then you can set up the repository database to load this data into.

Requirements for the AWR Warehouse
The repository for the AWR Warehouse should be an 11.2.0.4 database or above and with the
tuning and diagnostics pack, a limited EE license is available to use for the AWR Warehouse
repository. Don’t attempt to use your EM12c repository, (OMR) for the repository. Considering
the amount of data that will be housed here and use type, the two repository use would be
highly incompatible long-term. There are patches and other requirements, so see MOS note
1907335.1 for the complete list and detailed steps of installation. For general introduction and
set up instructions, see the AWS Warehouse section of the Oracle Documentation set here.

We are going to proceed onto more important things, like how to query the AWRW directly!

Why Mapping is Important
If you were to take your AWR queries "as is" and run them in the AWR Warehouse, you can
almost guarantee inaccurate results. To demonstrate this, we can take a specific AQL_ID:
"d17f7tgcaa416" to clarify why.

In the following query, using SQL_ID, ‘d17f7tqcaa416’ as an example, you quickly realize that
the algorithm used to create the SQL_ID is not unique to the database, but is assigned viato the
Oracle software and would be assigned to that query no matter what database it was run in.
This is easily recognized as a feature if one were to trouble shoot performance from production
to test to development or reporting where having a uniform generation of a unique identifier
for a specific statement is valuable.

Due to this, any AWR query that is modified to run against the AWR Warehouse must have a
join added to map the DBID so as to limit the results to the source target in question.

To map this data, we then inspect the AWR Warehouse DBSNMP schema and a very important
table to the repository that is part of the AWR Warehouse:

http://docs.oracle.com/database/121/TDPPT/tdppt_awr_warehouse.htm

This table has a simple, but effective design and is used to map data as part of ETL loads and
will be used by EM12c to provide reports via the user interface against the AWR Warehouse
and also by anyone wanting to query the AWR Warehouse efficiently.

We can now easily add this table to our queries, join on the NEW_DBID, (if you rename your
DBID, then understand why the OLD_DBID may be important for some historical queries….) and
add the TARGET_NAME to your where clause.

Querying the AWR Warehouse
To update a query, we’ll start with a simple query to inspect information about a particular
SQL_ID and the CPU usage per execution plan.

With just a few, simple changes, I now can see that I have seen a change in plan values for the
SQL_ID d17f7tqcaa416 for the db305database.

We can then build out on this and add a second database for comparison:

We’ve now demonstrated how a simple join offers performance data for the same query across
more than one database.

The next query pulls more information, but still only requires the request for a DBNAME, (or
two if you wish to compare or view more than one as we did in the previous query…) and then
the join on the DBID to NEW_DBID.

I can now query differences in plans, IO information, etc. and compare mid-year executions in
June 2010 vs. June 2014. We can use this information to answer very specific business
questions, performance changes or pull execution plans for comparison, as all of the
DBA_HIST_XX data exists in the AWR Warehouse. With all of this data from the source, now
offloaded to the AWR Warehouse available, you are able to perform full analysis against all
history for the database. The AWR Warehouse is designed for advanced reporting vs. previous
AWR repository that resided with the production environment and may have impacted
production use if advanced analysis was performed on the source database.

Across Multiple Databases on One Host

As demonstrated with previous queries, we’ll now demonstrate results across more than just
one database, but focus on values for an entire host and/or engineered system.

Displayed above are a high level view of CPU usage, disk reads and quantity of executions for
the last 120 days across this host for all the databases that reside on it. We could also take this
data and create a graph to give a visual view of this data for the business to understand the
demands of one database over another:

What Can’t I do with the AWR Warehouse?
As the examples above demonstrate, there are very few performance issues that can’t be
identified with the AWR Warehouse repository. The infinite retention and advanced warehouse
features are only limited by the user’s vision to answer all the questions of Information
Technology about a business’ database universe.
Enhancements and new ways of using this invaluable data arrives every day and more and
more people are going to embrace AWR Warehouse in the year to come. Build the database,
install the AWR Warehouse and start to use it -- The sky’s the limit.

