Advanced Usage of the AWR Warehouse

Author: Kellyn Pot’Vin-Gorman, Consulting Member of Technical Staff, SCP Team

Introduction

My initial introduction to the concept of an AWR Warehouse occurred back in 2009. The
company | worked for had a very unique situation, where once per week, a datamart was
dropped and a new image was created from the ever-growing data warehouse. Ensuring
consistent performance in a single database is difficult enough, the challenge of guaranteeing
this in a new database each week is a whole new demand on an optimization database
administrator. Due to this challenge, | took a set of scripts that Karl Arao and | had enhanced
over a period of a couple years via email into a full AWR Warehouse. This performance data
repository offered me answers to many of the company’s performance questions time and time
again, so when Oracle introduced its impressive offering, | was sold.

Sincethen,| " ve had the opportunity cCloaudGuarol K WRWi t h b o't

Warehouse interface, as wel | as work with the
understand what options and performance advantages exist with the AWR Warehouse
repository and played devil ' s adyvotakatogalwhen t

the impressive features that a centralized AWR Warehouse offers the IT business.

Design and Function

The AWR Warehouse is set up with the same objects as you are accustomed to in a standard
AWR schema of any Oracle database. The enhancement lies in the partitioning, (either by DBID,
SNAP_ID or a combination of both) that allows for quick loads, efficient querying and when
requested, effective purging of unwanted data.

The jobs to both extract data from the source target, as well as load into the AWR repository is
designed with “throttles” to ensure that 1 f h
user performance is felt.

Administors Use Historical AWR Snapshot Data in Several
Database Diagnostics Features
& Performance Home & Compare Period ADDM
2 ASH Analytics % Compare Period Report
& AWR Report
o * No impact on source databases
@3 ° :
]
Source ‘ 8 Central AWR Repository
Database 1 Load AWR =
Snapshots iS] Database 1 Snapshots
p— 9] Database 2 Snapshots
-] Repostory)
Source o
e 9] Database N Snapshots
@y =
Source
Database 3

Figure 1.1 The AWR Warehouse Architecture and ETL Load process.

If for some reason the database was unavailable for uploads to the AWR Warehouse, due to

mai nt enance or other outage, there are added
large and that oldest data is always loaded first to ensure retentiontimesd on’ t | mpede t h
ability to offload the valuable AWR data to the repository.

Duri ng -uap " cpaetrcihod, the ETL jobs are run once e
every 24hr. standard interval. The files are transferred from the source target file system to the

AWR Warehouse server via a “Agent to Agent” p

and at no time, touches the EM12c Oracle Management Service, (OMS) and/or Oracle
Management Repository, (OMR) server.

Sizing the AWR Warehouse Properly
When sizing the AWR Warehouse, one of my requirements is to have certain reports for a
sampling of databases that will source the AWR Warehouse. This report provides me the right
information to create the correct sizing requirements vs. any assumptions done with other
choices. The report is the General AWR Information report and can be found in the
SORACLE_HOME/rdbms/admin directory. It provides the following information:

9 Time of Report

9 AWR Retention and interval settings, including if non-default setting.
9 Schema percentage of space used in the SYSAUX tablespace.
1

Objects and space consumption in the SYSAUX tablespace, including breakdown of the
AWR space usage by type.

9 Automated tasks scheduled.
9 ASH Usage Info
9 Foreground vs. Background processing info.

|’ nowerun into a few projects where questions were raised on why so much space was
required and there is sometimes an issue with the data being retained in the AWR that must be
identified or addressed that will impact the long term size demand on the warehouse before
the data is brought over from the source database, (target) via the ETL to the AWR Warehouse.

Knowing how to identify this is crucial, but
regularly, so how would you know? We | | that’' s what this post i s
me time with how much is on my plate these da

Executing the AWR General Info Report
To run the AWR Info report, log into the host of the database in question as a user that has
rights to AWR reports. From the directory you would like to have the report housed, run the

following:
SQL> $ORACLE_HOME/rdbms/admin/awrinfo.sql;

Once the report is generated, simply open it in a text editor on the host or FTP it to your
workstation.

We' ' Il start with what a stldndgprack eAWR algref d oroks
it as a baseline. This will help you, as a DBA understand what is common for AWR space
consumption.

Our Standard retention and interval is 8 days and 60 minute intervals on snapshots and the
space usage for the SYSAUX tablespace looks like this:

kkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkhkkkkhkkhkkhkkhkkhkkhkkkkkkkhkkhkkkk

(1a) SYSAUX usage - Schema breakdown (dba_segments)
kkkkkkkkkkkkkhkkkkkhhhkkkhkkhhkkkhhkkkhkkhhkkkhhhkkkkhkkkhkkhkkkkkkkk

|

| Total SYSAUX size 2,993.9 MB (74% of 4,046.0 MB MAX with
AUTOEXTHED OFF)

|

| Schema SYS occupies 2,750.9 MB (91.9%)

| Schema XDB occupies 67.3MB (2.2%)

| Schema AUDSYS occupies 65.4 MB (2.2%)

| Schema MDSY'S occupies 61.7 MB (2.1%)

| Schema ORDDATA occupies 16.1 MB (0.5%)
| Schema SYSTEM occupies 15.7 MB (0.5%)
| Schema WMSYS occupies 7.1 MB (0.2%)

| Schema EXFSYS occupies 3.7MB (0.1%)

| Schema CTXSYS occupies 3.7MB (0.1%)

Non-Default ASH Settings

If the settings have been changed from the default, the AWR info report will display the settings
and | et you know S$Spicecygnsumptien will change ¥s.evhatdyeukeain | t .
our first example, too.

Warning: Non Default AWR Setting!

Snapshot interval is 30 minutes and Retention is 8 days (5.2 GB, vs. 3GB for a 60 min. interval.)
OR
Snapshot interval is 60 minutes and Retention is 42 days (10.5 GB)

With an increase in interval or retention, an increase in space consumption will result, but it
wo n'’' t There ark twid features that impact what space is required- rollup, which saves
space, then partitioning, that requires a bit more, so approximately 70% increase on average
with the interval to every 30 minutes.

When an increase in retention of AWR data is implemented, then you should calculate about
2.5G of data for each one week of AWR data retained, at 1hr interval on snapshots, (this
depends on version of the database, too. AWR in 10g is much smaller than 11g, which is also
small er than 12c..)

AWR Components

We also need to look at the consumption used by a standard AWR schema breakdown to
understand WHAT components are using the space:

*hkkkkkkkhkhhhhhhkhhhkhhhhhhhhhkhrrrhx

(3a) Space usage by AWR components (per database)

kkkkkkkkkkkkkkkhkkhkkhkkhkkkkkkkkhkkhkkhkk

COMPONENT MB %WR KB_PER_SNAP MB_PER_DAY MB_PER_WEEK TABLE% :
INDEX%

FIXED 1,559.1 63.3 7,750 181.6 1,271.5 45% : 55%
EVENTS 489.9 19.9 2,435 57.1 399.5 40% : 60%
SQL 238.39.7 1,184 27.8 194.3 64% : 36%
SPACE 111.1 45552 12.9 90.6 63% : 37%

ASH 35.31.41754.128.783% :17%

SQLPLAN 11.00.4551.3 9.0 64% : 36%

SQLTEXT 090.050.10.887% :13%

SQLBIND 0.6 0.0 3 0.1 0.5 50% : 50%

RAC 0.60.030.10.55 0% : 50%

Note that fixed objects are at the top of the list, followed by events, SQL, space and then, ASH.
This is how the flow of greatest to least should commonly be displayed.

Now lets looks at an AWR Info report where the data consumption is experiencing an issue:

kkkkhkkkkkkkkkkkkkhkkhkkhkkkkkkkkkhkkhkk

(3a) Space usage by AWR components (per database)

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkk

COMPONENT MB % AWR KB_PER_SNAP MB_PER_DAY MB_PER_WEEK TABLE% :
INDEX%

ASH 2,410.342.51,494 70.0 490.2 89% : 11%
FIXED 2,149.7 37.9 1,332 62.5 437.2 48% : 52%
EVENTS 489.7 8.6 304 14.2 99.6 43% : 57%
SPACE 224.4 4.0 139 6.5 45.6 58% : 42%

SQL 160.6 2.8 100 4.7 32.7 55% : 45%
SQLPLAN 82.01.4512.416.767% : 33%

RAC 58.31.036 1.7 11.8 70% : 30%
SQLTEXT 7.30.150.21.596% : 4%

SQLBIND 6.00.140.21.233%:67%

Note that the ASH data is the first component listed and the size is extensively larger than the

FIXED, EVENTS,etc. Ther e are numerous reasons for this t
what could have caused the increase in space consumption, as over time, the extended

retention into the AWR Warehouse will consume more space on the destination side,

increasing requirements for the AWR Warehouse.

When ASH is Extensive

First, we’ll check to see what the minimum an
dba_hist_snapshot in comparison to the AWR:

select min(snap_id),MAX(snap_id) from dba_hist_snapshot;

MIN(SNAP_ID) MAX(SNAP_ID)

15027 15189

select min(snap_id),MAX(snhap_id) from
WRH$_ACTIVE_SESSION_HISTORY;

MIN(SNAP_ID) MAX(SNAP_ID)

1 15189

As you can see, the AWR contains ASH data from the first snap_id when the dba_hist snapshot
shows that only data from 15027 on should exist.

We ' | | next check for orphaned rows of ASH dat

SELECT COUNT(*) FROM wrh$_active _session_history a
WHERE NOT EXISTS

(SELECT 1
FROM wrm$_snapshot

WHERE snap_id = a.snap_id

AND dbid = a.dbid

AND instance_number = a.instance_number
);

If this exists, follow the steps from Oracle to Manually Purge the Optimizer Statistics & AWR
Snaphots to Reduce Space Usage of SYSAUX Tablespace (Doc ID 1965061.1) to split the
partitions and purge the data manually from the AWR from the SOURCE DATABASE, (target) to
address before the ETL extracts and load the data to the AWR Warehouse.

Understanding ASH Parameters

The next reason for the extensive ASH data in the AWR could result in a change to the

parameters involving how ASH data is writtentothe AWR. | " ve only recently he
shops are doing this as a way t o Ihavatoamit!” t he
would prefer to see DBAs use auditing features vs. use ASH samples to track this, but it is

happening and they should expect the following:

1. Extensive space usage by the AWR

2. Inaccurate results in ASH and AWR reports due to Oracle expecting only 1:10 samples
existing in the AWR and having 10:10 will impact the results.

The parameters controlling this feature are underscore parameters and should only be changed
under the guidance of Oracle.

_ash_sampling_interval = 100 The interval that ASH samples, lessened, causing samples to be
created more often than the default of 1000.

_ash_sample_all = TRUE True results in samples of even inactive sessions to be created,
increasing the amount of ASH data by 10X or more.

_ash_disk_filter_ratio = 1 Would result in ASH writing all samples to the AWR instead of 1:10.

Once you’ vaayissuesthstarageofehd AWR and loaded all snapshots to your new

AWR Warehouse, also remember to “dial edown” 't
default of 8 days, (or something close) and shrink the SYSAUX tablespace to reallocate the

space back to the database, having no longer need of the space it once consumed.

The AWR Warehouse does require considerable storage for the performance data housed
within the Automatic Workload Repository, but with the right process to inspect what is kept in
your AWR before building out your environment, you can avoid having to allocate more storage
than you really need to.

Once you know what is in your AWR in your source databases are prepared to bring into an
AWR Repository, then you can set up the repository database to load this data into.

Requirements for the AWR Warehouse

The repository for the AWR Warehouse should be an 11.2.0.4 database or above and with the

tuning and diagnostics pack, a limited EE license is available to use for the AWR Warehouse
repository. Don’t attempt to use your EM12c r
the amount of data that will be housed here and use type, the two repository use would be

highly incompatible long-term. There are patches and other requirements, so see MOS note

1907335.1 for the complete list and detailed steps of installation. For general introduction and

set up instructions, see the AWS Warehouse section of the Oracle Documentation set here.

We are going to proceed onto more important things, like how to query the AWRW directly!

Why Mapping is Important

If you were to take your AWR queries "as is" and run them in the AWR Warehouse, you can
almost guarantee inaccurate results. To demonstrate this, we can take a specific AQL_ID:
"d17f7tgcaad16" to clarify why.

In the following query, using SQL_ID, ‘d17f7tqcaad416’ as an example, you quickly realize that
the algorithm used to create the SQL _ID is not unique to the database, but is assigned viato the
Oracle software and would be assigned to that query no matter what database it was run in.
This is easily recognized as a feature if one were to trouble shoot performance from production
to test to development or reporting where having a uniform generation of a unique identifier
for a specific statement is valuable.

5Q0L> select distinct(dbid) from dba hist sglstat
2 where sqgl id='dl7f7tgcaadleé’;

1912296936
2089309222
3373883684
1940814992
2876020586
8155403861
1119635158

18 rows selected.

Due to this, any AWR query that is modified to run against the AWR Warehouse must have a
join added to map the DBID so as to limit the results to the source target in question.

To map this data, we then inspect the AWR Warehouse DBSNMP schema and a very important
table to the repository that is part of the AWR Warehouse:

http://docs.oracle.com/database/121/TDPPT/tdppt_awr_warehouse.htm

DBSNMP .CAW_DBID_MAPPING

MAPPING ID
EM ID
TARGET NAME
TARGET TYPE
OLD_DBID
NEW _DBID

This table has a simple, but effective design and is used to map data as part of ETL loads and
will be used by EM12c to provide reports via the user interface against the AWR Warehouse
and also by anyone wanting to query the AWR Warehouse efficiently.

SQL> select target name, new dbid from dbsnmp.caw dbid mapping;

rrrrrr

We can now easily add this table to our queries, join on the NEW_DBID, (if you rename your

DBI D, then understand

NUMBER {38)
NUMBER
VARCHAR?Z (266)
VARCHAR?Z (64)
NUMBER
NUMBER

NEW_DEID

815540361

1940814992
2700230493
1813086947
1048341949
1890415439
1912296936

add the TARGET_NAME to your where clause.

Querying the AWR Warehouse
To updat e

query, we

SQL_ID and the CPU usage per execution plan.

why OLD_DBI D may

start simpl e

be

g

5QL> select SQL_ID

PLAN_HASH VALUE

sum (EXECUTIONS DELTA) EXECUTIONS

sum (ROWS_PROCESSED_DELTA) CROWS

trunc (sum(CPU_TIME_DELTA)/1000000/60) CPU_MINS

, trunc(sum(ELAPSED_TIME_DELTA)/1000000/60) ELA_MINS
from DBA_HIST SQLSTAT S, DBSNMP.CAW DBID MAPPING M
where LOWER (M.TARGET NAME) = '&dbname'

and M.NEW DBID = S.DBID

and S.SQL ID in ('&sglid')

group by SQL_ID , PLAN_HASH VALUE

crder by SQL ID, CPU_MINS:

r
r
r

r

SQL ID PLAN HASH VALUE EXECUTIONS CROWS CPU_MINS ELA MINS
dl7f7tgcaadle 3035679780
dl7f7tgcaadlé 8947562239

With just a few, simple changes, | now can see that | have seen a change in plan values for the
SQL_ID d17f7tqcaadl6 for the db305database.

We can then build out on this and add a second database for comparison:

SQL> select M.TARGET NAME dbname

, SQL_ID

, PLAN HASH VALUE

, sum(EXECUTIONS DELTA) EXECUTIONS

sum (ROWS_PROCESSED DELTR) CROWS

trunc(sum(CPU_TIME DELTA)/1000000/60) CPU MINS

, trunc(sum(ELAPSED TIME DELTA)/1000000/60) ELA MINS
from DBA HIST SQLSTAT S, DBSNMP.CAW DBID MAPPING M
where LOWER (M.TARGET NAME) in('é&dbname’, ' &dbname2') €second DB
and M.NEW_DBID = S.DBID

and S.50QL ID in ('&sglid")

group by S.TARGET_NAME, SQL_ID , PLAN HASH VALUE
order by SQL_ID, CPU MINS;

r

r

DENAME SQL_ID PIAN_HASH_VRLUE EXECUTIONS CROWS CPU_MINS ELA MINS
i .gracl m dl7f7tgcaadle 1435720983 1 1 0 0

db305 dl7f7tgcaadle 3035679780 1 1 0 0
db305 dl7f7tgcaadle 8347562239 1 1 2.21 1.79

We’ ve now demonstrated how a simple join offe
more than one database.

The next query pulls more information, but still only requires the request for a DBNAME, (or
two i f you wish to compare or view more than

the join on the DBID to NEW_DBID.

column sample_end format a2l

select to_char(min(s.end_interval time), 'DD-MON-YYYY DY HH24:MI')
sample end

, g.sgl_id

, g.plan_hash value

; sum(g.EXECUTIONS DELTA) executions

, round(sum{DISK READS delta)/greatest(sum(executions delta),1),1)
pig per exec

. round(sum{BUFFER_GETS_del:a)/grea:es:(sum{execu:ions_delta],1],11
lio_per exec

r

round ((sum (ELAPSED_TIME_delta) /greatest (sum(executions_delta),1)/1000)
1) mseg exec

from dba hist sglstat g, dba hist_snapsheot s, dbsnmp.caw dbid mapping
m

where m.target name= upper ('&dbname')

and q.S5QL_ID=trim('&sglid.')

and s.snap id = g.snap_id

and s.dbid = g.dbid

and g.dbid = m.new_dbid

and s.instance number = g,instance number

and s.end interval time >= to_date(trim('&start time.'),'dd-mon-wvyyy
hh24:mi")
and s.begin_interval_ time <= to_date(trim{'&end time.'),'dd-mon-vyyy
hh2d4:mi')

and substr(to_char(s.end interval time, 'DD-MON-YYYY DY HH24:MI'),13,2)
like '%&hr24 filter.%'

greoup by s.snap id

, g.sgl_id

, g.plan_hash value

order by s.snap_id, g.sgl_id, g.plan hash value;

SAMPLE END SQL ID PLAN HASH VALUE EXECUTIONS PIO PER EXEC
LIO_PER;EXEC HSEC_EXEC

19-JUN-2010 égvchlxu9cai3g 0 50 .4 206 54.5
19-JUN-2010 é&gvchlxudca3g 0 50 0 541 42.8
19-JUN-2010 é&gvchlxu9ca3ig 0 50 0 353.1 49,1

SAMPLE END SQL_ ID PLAN HASH VALUE EXECUTIONS PIO_PER EXEC
LIO_PER_EXEC MSEC_EXEC

28-JUN-2014 3hih3b8drup2x 0 30 0 435.86 20.9
28-JUN-2014 3hih3b&drup2x 0 30 .2 434.9 21.2
28-JUN-2014 3hih3b8drup2x 0 30 1.2 823.8 26.3
28-JUN-2014 3hih3b&drup2x 0 30 1.5 369.3 20.5

| can now query differences in plans, 10 information, etc. and compare mid-year executions in
June 2010 vs. June 2014. We can use this information to answer very specific business
guestions, performance changes or pull execution plans for comparison, as all of the
DBA_HIST_XX data exists in the AWR Warehouse. With all of this data from the source, now
offloaded to the AWR Warehouse available, you are able to perform full analysis against all
history for the database. The AWR Warehouse is designed for advanced reporting vs. previous
AWR repository that resided with the production environment and may have impacted
production use if advanced analysis was performed on the source database.

Across Multiple Databases on One Host

As demonstrated with previous queries,
one database, but focus on values for an entire host and/or engineered system.

select * from {
select

m.target name,

sum{CPU TIME DELTA),
sum(DISK_READS DELTA),

count (*)
from
DBA_HIST SQLSTAT a, dba hist_snapshot s, dbz hist_database instance

di, dosnmp.caw dbid mepping m

where di.host name='s&host'

and di.dbid in m.new_dbid

and m.new_gdbid = a.dRid

and a.snap_id = s.snap_id

and s.begin interval time > sysdate -120
group by m.target name

order by

sum{CPU_TIME DELTA) desc)

TARGET NAME

CPU_SUM SUM(DISK READS DELTA) COUNT (*)

db306
531404950000 37830984 235318
db308

505794340000 35797879 130897
db310
375487020000 4531907 91725
db314
331511340000 66608306 692015
db318
171840830000 27431935 310404
db307

159150740000 11246128 116810

db304

128096640000 555483946 243479
db317
122228340000 17706738 241942
db303
103659670000 3850941 38092
db309
36379820000 2246820 8l6ll
db3le
25804930000 1818186 68747
db301
16172050000 13471177 250871
db305
9797020000 17900962 81353
db313
8574870000 15286813 273022
db319
8480480000 1e0g4847 274796
db302
6411320000 8206788 89097
db311
5878100000 359376 10944

17 rows selected.

Displayed above are a high level view of CPU usage, disk reads and quantity of executions for
the last 120 days across this host for all the databases that reside on it. We could also take this
data and create a graph to give a visual view of this data for the business to understand the
demands of one database over another:

200000000000
200000000000

What Can’t | do with the AWR Warehouse?

As the examples above demonstrate, there are
identified with the AWR Warehouse repository. The infinite retention and advanced warehouse
features are only |limited by the user’”s visio
Technol ogy about a business’ database univers

Enhancements and new ways of using this invaluable data arrives every day and more and
more people are going to embrace AWR Warehouse in the year to come. Build the database,
install the AWR Warehouse and starttouseit-The sky’'s the | imit

