

Production time profiling
On-Demand
with Java Flight Recorder

Klara Ward
Principal Software Developer
Java Platform Group, Oracle

Oracle Confidential ς
Internal/Restricted/Highly

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Using Java Mission Control & Java Flight Recorder

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

About me

ïDeveloper in the Oracle Java Mission Control team
in Stockholm, Sweden

ïSometimes tweets @klaraward

Celebrating Java 20 Years at JFokus

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
ŦǳƴŎǘƛƻƴŀƭƛǘȅ ŘŜǎŎǊƛōŜŘ ŦƻǊ hǊŀŎƭŜΩǎ ǇǊƻŘǳŎǘǎ ǊŜƳŀƛƴǎ ŀǘ ǘƘŜ ǎƻƭŜ ŘƛǎŎǊŜǘƛƻƴ ƻŦ hǊŀŎƭŜΦ

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

 Agenda

Overview of Java Mission Control

Overview of Java Flight Recorder

Demo

Customization, Future, Links

Q&A

1

2

3

4

5

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

άI managed to do in one day what I've failed
to do in 2+ weeks using <profiling tool> and
<another profiling tool>.έ

ά JMC is my main tool for getting insight into
the rhythm of a JVM and the running
ŀǇǇƭƛŎŀǘƛƻƴǎΦ Χ L ƘŀǾŜ ǳǎŜŘ ǊŜŎƻǊŘƛƴƎǎ ǘƻ
resolve critical production issues caused by
latency, memory-leaks or threading. έ

Maurizio Cimadamore, Oracle (Java LangTools)

Allan Thrane Andersen, Trygg

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Developer Productivity Report 2015,
Java Performance Survey

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

έWŀǾŀ aƛǎǎƛƻƴ /ƻƴǘǊƻƭ ǇǊƻŦƛƭƛƴƎ ǘƻƻƭέ

Probably:

ïData from Java Flight Recorder

ïVisualized in Java Mission Control

What do they mean?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recorder (JFR) & Java Mission Control (JMC)
Brief overview

JMC

 JDK

 JVM

Low
overhead

JFR
Engine

JFR
Events

Recording data
 myrecording.jfr

Control recordings
start/stop/dump

java - XX:+FlightRecorder JDK/bin/jmc

or Eclipse plug-ins

JDK/bin/jcmd <pid> <cmd>

java - XX:StartFlightRecording

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Java Mission Control
The graphical client

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Mission Control Overview

ÅA tools suite for production use (fine in development too)

ïBasic monitoring

ïProduction time profiling and diagnostics

ÅFree for development and evaluation

ïTool usage is free, data creation in production

 requires a commercial license

tiny.cc/javalicense

http://tiny.cc/javalicense

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

History of Mission Control

ÅJRockit Flight Recorder

ÅAppeal(JRockit) -> BEA Systems -> Oracle <- Sun

ÅBest JRockit features -> HotSpot JVM

ÅJFR and JMC released with 7u40, September 2013

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Mission Control Main Tools

Two main tools:

ÅJMX Console

ïOnline monitoring

ÅFlight Recorder

ïOffline low overhead profiler

ïControl and visualization in JMC

ÅJRockit Mission Control also had the Memory Leak Analyzer

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Experimental Plugins

ÅDTrace

ïJFR style visualization of data produced by DTrace

ÅJOverflow

ïMemory anti-pattern analysis from hprof dumps

ÅJMX Console plug-ins

ÅJava Flight Recorder plug-ins

ïWLS

ïJavaFX

Downloadable from within Mission Control

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JMC installation/startup

 <JDK>/bin/ jmc

ïMac: (/ usr /bin/) jmc

 Add if needed:

 ïconsoleLog ïdebug (| more 2>&1)

ÅEclipse plug-ins

ïInstall from update site on OTN:
http://oracle.com/missioncontrol, Eclipse Update Site

ÅExperimental plug-ins: Install from within the JMC app, or from

 https://oracle.com/missioncontrol, Eclipse Experimental Update Site

http://oracle.com/missioncontrol
https://oracle.com/missioncontrol

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Java Flight Recorder
Low overhead profiling

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Flight Recorder

ÅHigh Performance Event Recorder

ÅBuilt into the JVM

ïAlready available runtime information

ïaŜŀǎǳǊƛƴƎ ǘƘŜ ǊŜŀƭ ōŜƘŀǾƛƻǊΣ ŘƻŜǎƴΩǘ ŘƛǎŀōƭŜ W±a
optimizations

ÅBinary recordings

ïSelf contained self describing chunks

ÅVery detailed information

ÅExtremely low overhead (~1-2%)

ïCan keep it always on, dump when necessary

101

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recorder (JFR) & Java Mission Control (JMC)
Brief overview

JMC

 JDK

 JVM

JVM

Events

JFR

Engine
Recording data

 myrecording.jfr

Control recordings
start/stop/dump

java - XX:+FlightRecorder JDK/bin/jmc

or Eclipse plug-ins

JDK/bin/jcmd <pid> <cmd>

java - XX:StartFlightRecording

JFR Java
API

JFR JMX
API

Java

Events

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data collected by JFR

ÅJava application behavior

ïThreads/Locks

ïI/O

ïExceptions

ÅJVM behavior (indirect Java application behavior)

ïGarbage collection, allocation

ïJIT Compiler

Implemented by the different subsystem teams

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Method sampling

ÅSampling profiler

ïNot displaying every single call to your method

ÅThis is partly why we get the low overhead

ÅDetects hot methods

ïDoes not require threads to be at safepoints

Å(Flags currently needed to give more accurate non-safepoint data)

- XX:+UnlockDiagnosticVMOptions - XX:+DebugNonSafepoints

(will be default in coming releases)

ÅNot sampling threads in native

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Developer Productivity Report 2015,
Java Performance Survey

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Developer Productivity Report 2015,
Java Performance Survey

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different Kinds of Events

ÅInstant Event - Exception

ÅDuration Event ς Thread.sleep

ïConfigurable threshold

ÅRequestable Event ς Method profiling sample

ïPolled from separate thread

ïConfigurable period

ÅPeriod and threshold settings impact the performance overhead

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Event settings

ÅPredefined settings

ïΨŘŜŦŀǳƭǘΩ ς designed to get max information within <= 1 % overhead

ïΨǇǊƻŦƛƭŜΩ ς even more information, ~2 % overhead

ïEnabling of event types, configuring periods and thresholds

ïjre /lib/ jfr /*.jfc

ÅDesign your own from the Mission Control GUI

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different Kinds of Recordings

ÅContinuous Recordings

ïHave no end time

ïMust be explicitly dumped

ïExample use case: Enable at startup, dump the last X minutes when needed

Å¢ƛƳŜ CƛȄŜŘ wŜŎƻǊŘƛƴƎǎ όΨǇǊƻŦƛƭƛƴƎ ǊŜŎƻǊŘƛƴƎǎΩύ

ïHave a fixed time

ïIf started from Java Mission Control, opened automatically in the GUI

ïExample use case: Performance testing under load, do a 1 minute recording

ÅResulting *ΦƧŦǊ ŦƛƭŜ ŀƭǎƻ ŎŀƭƭŜŘ άwŜŎƻǊŘƛƴƎέ

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating recordings
More than one way

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Preparations

ÅStart the JVM from which to get recordings with:

 - XX:+UnlockCommercialFeatures

 - XX:+FlightRecorder

ÅIn 8u40 and later, possible to enable at runtime if needed

ïUsing JMC or jcmd

ïάhƴ-ŘŜƳŀƴŘέ

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using Mission Control

1. Find a JVM to do a recording on in the JVM Browser

2. Double click the Flight Recorder node under the JVM

3. Follow the wizard

NEW: No need for the JVM flags,

automatic enablement from JMC

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using Startup Flags

 - XX:+UnlockCommercialFeatures - XX:+FlightRecorder

Å Time fixed

ï - XX:StartFlightRecording= delay=20s,duration=60s,

filename=C: \ tmp \ myrecording.jfr,settings=profile,name= JavaLand

Å Continuous w/ dumponexit
ï - XX:StartFlightRecording=settings=default

- XX:FlightRecorderOptions=dumponexit=true,

dumponexitpath=C: \ tmp \ myrecordings

ï (Needed before 8u20: - XX:FlightRecorderOptions=defaultrecording=true)

Å{ŜŜ ŘƻŎǳƳŜƴǘŀǘƛƻƴ ŦƻǊ WŀǾŀ ƻǇǘƛƻƴǎ όƎƻƻƎƭŜ άƧŀǾŀ ƻǇǘƛƻƴǎέύ

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using JCMD

Usage: jcmd <pid> <command>

Å Starting a recording:
jcmd 7060 JFR.start name=MyRecording settings=profile

delay=20s duration=2m filename=c: \ tmp \ myrecording.jfr

Å Dumping a recording:
jcmd 7060 JFR.dump name=MyRecording

filename=C: \ tmp \ dump.jfr

Å Unlocking commercial features (if JVM not started with the flag):

 jcmd 7060 VM.unlock_commercial_features

5ƻƴΩǘ ŦƻǊƎŜǘ ǘƻ ǘǊȅ jcmd <pid> help to see what else jcmd can do

Useful for controlling JFR from the command line

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using JMX Console triggers

Å Start JMC

Å Connect a JMX Console to your
application

Å Configure and enable rules on the
Triggers tab

Å Recording will be started or dumped
when the trigger occurs

When realtime monitoring your application

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Remote production systems

Å Remote access
ï either using - Dcom.sun.management.jmxremote ΧΣ ŎƻƴƴŜŎǘ ǿƛǘƘ Wa/

ï or start recording from local commandline using jcmd , transfer JFR to workstation

Å Enabling JFR

ï at startup
Å some very small initiation overhead at startup, threads allocate small amount of

extra memory

ï dynamically
Å 0% overhead at startup, initiation overhead happens at time of enabling, might

cause some classes to be deoptimized etc.

Å If you want to avoid restart

No GUI, security restrictions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Analyzing recordings
Using the graphical client

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

How to think about the information shown

ÅOnly you know what your application is supposed to be doing

ïBatch job, or real time trading?

ïDo you want the CPU usage to be high or low?

ïIf you have a theory about what is wrong, you can find out why

When analyzing Flight Recordings

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

How to think about the information shown

ÅCPU load

ïLow load ς method sampling not very interesting

ïFull load ς latencies not very interesting/likely

ÅEvent thresholds

ïKeeping performance up but still detecting outliers

ïIs the thread running normally during 30%?

ïHint: Default threshold is 10 ms.

Common pitfalls

