
Oracle Database Locking Mechanism Demystified

Pini Dibask

Quest Software

Israel

Keywords: Locks, Performance, Database, Scalability, Concurrency, Consistency, Integrity

Introduction

The purpose of locks in Database systems is to maintain Database concurrency and consistency when

multiple transactions access the same shared resources. The reason these are “shared resources” and

not just “tables” is because there are various types of shared resources in a Database, it could be rows

in a table, entire table, index, stored procedure, etc.

The need for locking mechanism is a result of having multiple user sessions which may access same

shared resources and by doing so they can cause “logical corruptions” to the data. In fact, if in our

Database systems world, we always had one single session in the Database that is running and

updating data or altering data structures, locks were not required.

Concepts of Locking Mechanism in Oracle Database

Different RDBMs (Relational Database Management Systems) have different locking mechanisms,

each RDBMS has its own concepts and nuances. This manuscript and the associated presentation will

cover the Oracle Database locking mechanism.

In Oracle, a reader (someone who executes a SELECT query), never creates any locks, so other

readers or writers will never be blocked because of a reader; having said that, there is only one

exception for that and it is when someone executes the [SELECT …. FOR UPDATE] statement.

A writer, never blocks other readers. For example, if a writer updates/deletes/inserts a row and the

transaction has not been ended yet, other readers can simultaneously query the data in the table

without being affected by the writer operations. Oracle manages to accomplish that by storing a

“before images” of Database blocks stored in a tablespace named “Undo Tablespace”, so even if a

writer modifies data, Oracle still has access to the table’s data as if the writer’s transaction never

occurred. Once the transaction is committed, other readers will be able to see the writer’s

modifications.

During DML modifications (inserts, updates, deletes), Oracle acquires locks at the row-level. The only

time when Oracle blocks a session is when there are concurrent writers. For example, if one session

updates a row in a table, then as long as the transaction has not been ended, other sessions cannot

update that row, but they can definitely read the table, as previously mentioned.

Generally speaking, Oracle Database has 2 lock modes: share locks and exclusive locks. The major

difference between these 2 lock modes is that many share locks can be acquired on a single resource in

a given point in time, but exclusive lock cannot be shared on a single resource. For example, assuming

the user has updated a single row in the EMPLOYEES table by executing the following statement:

UPDATE EMPLOYEES

SET CITY = JERUSALEM

WHERE EMPLOYEE_ID = 123;

In this case, Oracle automatically acquires an exclusive row lock on the row for the EMPLOYEE_ID

123 and a share lock on the EMPLOYEES table, meaning that as long as the transaction has not been

ended, other sessions cannot acquire an exclusive row lock for EMPLOYEE_ID 123, but they can

definitely acquire exclusive row lock on different rows and share table lock; this also ensures that

other sessions cannot acquire exclusive lock on the table, for example by trying to alter the table’s

structure), because the table is already locked in a share table mode.

DDL Operations

When executing a DDL operation such as CREATE TABLE, DROP INDEX, ALTER TABLE, Oracle

will implicitly commit the existing transaction and will auto commit the DDL command, i.e. there is

no option to rollback the DDL command. Since DDL commands almost always acquire exclusive lock

on the object, any other share or exclusive locks on the table will not allow to execute the DDL as

Oracle will raise “ORA-00054: resource busy and acquire with NOWAIT specified” error. For

example, even if one row is being updated in a table that holds millions of records, then as long as the

transaction for the update statement is still running, Oracle won’t allow DROP or ALTER operations

against that table.

Note: Starting from Oracle 11gR1 it is possible to specify a time limit for how long DDL statements

will wait in a DML lock queue by setting the DDL_LOCK_TIMEOUT parameter. The default value

of zero indicates a status of NOWAIT. The maximum value of 1,000,000 seconds will result in the

DDL statement waiting forever to acquire a DML lock.

Deadlocks

Deadlock is a locking scenario that occurs when two or more sessions are blocked as they wait

because of a lock that is being held by the other session. Oracle Database automatically detects this

scenario and performs a statement-level rollback to one of the sessions, because otherwise, they will

wait forever as both of them are blocked and waiting to each other’s locked resources. The session that

its statement is being rolled back, will encounter an “ORA-00060: Deadlock detected while waiting

for resource.” error message (that will also be recorded in the alert log file). A common misconception

is that Oracle handles deadlock events by terminating one of the sessions. While that might be the case

in other Databases systems, that’s not the case in Oracle Database.

Blocked Inserts

When inserting a row to a table that has either a primary key or unique constraint, the INSERT

statement will be blocked if another running transaction already inserted the same value for the

column which has the primary key or unique constraint. The reason for that is because Oracle must

enforce uniqueness on the column that has the primary key or unique constraint defined. If a session

has opened a transaction and tried to insert the value ‘X’ for a column with unique constraint, and

another session tries to insert the same value to the same column, then the second transaction will be

blocked until the first transaction will be ended by either a commit or a rollback. If the first transaction

will be committed then the second session will encounter the “ORA-00001: unique constraint

(string.string) violated“ error.

Unindexed Foreign Keys

Let’s assume that we have a child table named EMPLOYEE and a parent table named

DEPARTMENT. In the child table (EMPLOYEE) we have a foreign key on the DEPARTMENT_ID

column. If the DEPARTMENT_ID column in the EMPLOYEE table is not indexed, Oracle will place

a full table lock on the EMPLOYEE table and will not allow any DMLs on the EMPLOYEE table if a

user deletes an entire table row from the parent table, or if a user updates the value of the parent’s

table primary key. Unindexed foreign keys can be the cause of lock issues in general and of deadlocks

in particular in many cases.

http://docs.oracle.com/database/121/REFRN/GUID-72D43EF8-F7AF-4011-8D64-73ABC4FB2154.htm#REFRN10267

Monitoring Locks in the Database

Oracle’s locking mechanism is efficient as DML statements which modify rows acquire locks at the

row-level. Even if a user will update 5,000 rows in a table that contains 6,000 rows, oracle will not

lock the entire table but rather only the 5,000 rows which have been updated. That’s not the only

reason why it is efficient; it is also efficient as readers never block writers and writers never block

readers. Yet, in some scenarios, if the application is written in a way that is causing lock waits activity,

i.e. causing sessions to be wait as they are blocked; this can definitely impact the Database

performance as Oracle sessions will spend time on lock wait events which are associated to the

“Application” wait category. These locks can be monitored by using various Oracle dictionary views

such as the following views (their definition is taken from the Oracle documentation):

V$LOCKED_OBJECT - Lists all locks acquired by every transaction on the system. It shows which

sessions are holding DML locks (that is, TM-type enqueues) on what objects and in what mode.

DBA_WAITERS - Shows all the sessions that are waiting for a lock. In an Oracle RAC environment,

this only applies if the waiter is on the same instance.

DBA_BLOCKERS - Displays a session if it is not waiting for a locked object but is holding a lock on

an object for which another session is waiting. In an Oracle RAC environment, this only applies if the

blocker is on the same instance.

The above views can provide valuable information when it comes to investigating locking scenarios;

however, DBAs are faced with a serious challenge when they are required to investigate historical lock

issues in their Databases. For example, if a user complains on lock scenarios which occurred

days/weeks/months ago, the DBA would probably want to proactively investigate it so these issues

will not occur again in the future. One way to do that is to query V$ACTIVE_SESSION_HISTORY

dictionary view as it contains snapshots of active database sessions including those who waited for

locks ; since the information is limited and stored in-memory, users can also access

DBA_HIST_ACTIVE_SESS_HISTORY which displays the history of the contents of the in-memory

active session history of recent system activity.

Note: Accessing V$ACTIVE_SESSION_HISTORY and DBA_HIST_ACTIVE_SESS_HISTORY

dictionary view requires having a license for the Diagnostics pack which is an extra cost option of

Oracle Database Enterprise Edition.

Another way to analyse historical lock issues is to use tools like Foglight for Oracle which is a 24x7

enterprise monitoring tool that enables you visualize the instance workload and in particular lock-

related activity. It also allows you to view all the lock trees in any give point in time in the history, and

filter the information by various dimensions such as: sql statements, users, programs, pluggable

databases, services, sessions and more.

In the below screenshot for example, you can see all the lock trees which are associated to all the

sessions that run with a client machine named “PROD\ISLARPS20” and with operating system user

named “pdibask” in any point in time. In this case, the table in the “Blocking History” tab reveals 2

lock trees and for each lock tree it displays information about the blocking sessions and the blocked

sessions as well as the lock duration, blocked SQL statement and more.

https://docs.oracle.com/database/121/REFRN/GUID-3F9F26AA-197F-4D36-939E-FAF1EFD8C0DD.htm#REFRN30125
http://docs.oracle.com/database/121/REFRN/GUID-2BFB9E43-BCE8-4E3B-AC94-A4B633ADB998.htm#REFRN23306
http://docs.oracle.com/database/121/REFRN/GUID-61AE6C87-865B-46FB-9BDD-551D3EE1C8B4.htm#REFRN23027
https://docs.oracle.com/database/121/REFRN/GUID-69CEA3A1-6C5E-43D6-982C-F353CD4B984C.htm#REFRN30299
http://docs.oracle.com/database/121/REFRN/GUID-335EC838-FEA0-4872-9E14-67C5A1908B35.htm#REFRN23400
https://software.dell.com/products/foglight-for-oracle/

Illustration. 1: Investigating historical lock issues using Foglight for Oracle

Contact address:

Name

Quest Software

Hamifal 13

6022113, Or Yehuda

Phone: +972(0)54-7778395

Email : pini.dibask@software.dell.com

Twitter : @pini_dibask

Blog : http://OracleDBPro.BlogSpot.com

LinkedIn : http://linkedin.com/in/pinidibask

OTN Forums : https://community.oracle.com/people/Pini%20Dibask

http://oracledbpro.blogspot.com/
http://linkedin.com/in/pinidibask
https://community.oracle.com/people/Pini%20Dibask

